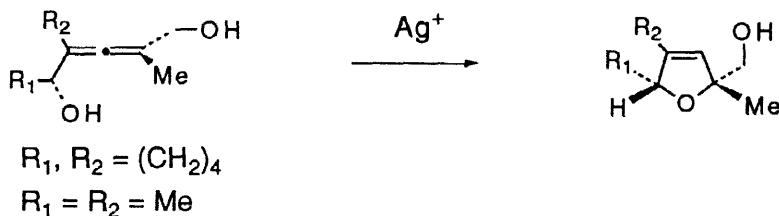


On the Chemoselectivity of Formation of 2-(α -Hydroxyalkyl)-2,5-Dihydrofurans from Allenic Diols

José M. Aurrecoechea* and Mónica Solay

Departamento de Química Orgánica, Facultad de Ciencias, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain

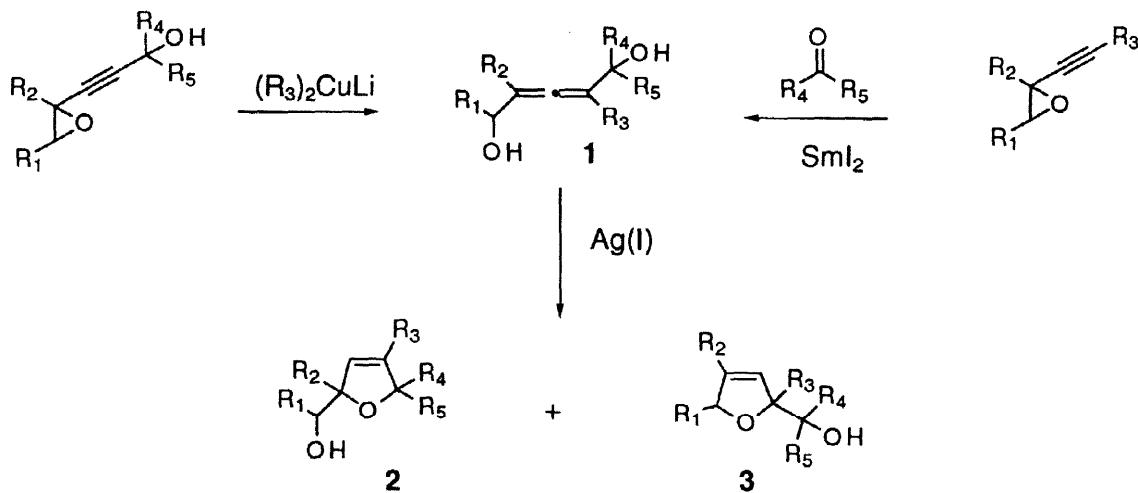

Received 20 November 1997; revised 2 February 1998; accepted 5 February 1998

Abstract: The Ag(I)-promoted cyclization of 2,5-pentadiene-1,5-diols containing both a tertiary and a secondary or primary hydroxyl group, has been examined. In general, the reaction displays a preference for cyclization through the more hindered tertiary hydroxyl group, sometimes to the exclusion of alternative pathways involving secondary or primary carbinol centers.

© 1998 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

The 5-*endo* cyclization of α -allenic alcohols affords 2,5-dihydrofurans which are themselves useful synthetic intermediates¹ and structural elements in natural products.² This transformation can be effected under basic conditions³ or, more generally, with transition metal salts acting as Lewis acid promoters.^{1a,b,4} Among the latter, the Ag(I)-promoted^{1a,b,4a-d} cycloisomerization of α -allenols has proven particularly useful. This reaction utilizes mild reaction conditions and provides high yields of dihydrofurans in a stereospecific manner. The synthesis of 2-(α -hydroxyalkyl)-2,5-dihydrofurans has been possible using this method by cyclization of α,α' -allenic diols where one of the two hydroxyl groups was conveniently protected.^{1a} In two isolated cases the cyclization was effected directly from the fully unprotected diols resulting in the observation of a remarkable preference for cyclization of secondary over primary hydroxyl groups, in spite of the former being more hindered (Scheme 1).



Scheme 1

The allenic diols used for these transformations had been synthesized by organocuprate $\text{S}_{\text{N}}2'$ displacements on alkynylloxiranes bearing a propargylic hydroxyl group.^{1a} More recently, these type of compounds has been prepared by SmI_2 -mediated coupling between alkynylloxiranes and ketones.⁵ Since a number of diols with different combinations of primary, secondary and tertiary hydroxyl groups was available, it was considered interesting to check the generality of the aforementioned preference and to try to rationalize the factors leading to the observed chemoselectivity. Additionally, the overall conversion depicted in Scheme 2 would allow the two-step synthesis of 2-(α -hydroxyalkyl)-2,5-dihydrofurans **2**, **3** from readily available alkynylloxiranes and ketones without any need for additional protection-deprotection steps.

RESULTS AND DISCUSSION

Allenic diols **1** (prepared from alkynyloxiranes and ketones by SmI_2 -mediated coupling⁵) were treated with AgNO_3 and CaCO_3 in acetone/ H_2O ^{1a} or simply with AgNO_3 /acetone^{4d} to provide in all cases high yields of dihydrofurans products **2**, **3** (Table). As previously noted,^{4d} reactions run in the absence of CaCO_3 and H_2O afforded in general better yields. The diastereomeric ratios of the starting diols **1** were maintained in the dihydrofuran products, evidencing the stereospecificity of the reaction.^{1a,b,4b-d} For dihydrofurans **2a-d** the stereochemical assignments were confirmed by NOE experiments performed on the separated isomers. Thus, a NOE between the carbinol proton and the heterocyclic C₃-H was found for the minor (*syn*) isomer of **2a-c**, whereas the corresponding major isomers (*anti*) and the single isomer **2d** showed none.

Scheme 2

For all the cyclic substrates **1a-d** cyclization took place preferentially through the more hindered tertiary hydroxyl group of **1**. This is in line with the preference for cyclization of secondary over primary hydroxyl groups previously reported.^{1a} Furthermore, our results suggest that the origin of these preferences probably lies in the selective formation of the Ag(I) -allene complex that better accommodates both a positive charge and the steric requirements of the allene terminus. Thus, for substrates **1a-c** the greater steric bulk of the tertiary carbinol moiety is reinforced by the better stabilization of positive charge provided by a more substituted allene terminus leading in these cases to the exclusive formation of dihydrofurans **2a-c**. Diol **1d**, on the other hand, affords a mixture of **2d** and **3d** where the former still predominates, indicating that when both allene termini are equally substituted, complexation at the less congested site is the dominant factor controlling selectivity.^{1a}

With the acyclic diols **1e** and **1f** the same trends were observed. The cyclization of **1e** afforded exclusively the dihydrofuran **2e**, the result of a remarkable preference for cyclization of a tertiary hydroxyl group over a primary one. On the other hand, diol **1f** gave a mixture of **2f** and **3f** with the former greatly predominating. Dihydrofuran **3f** proved to be unstable, undergoing oxidation to the corresponding furan **4**, that was also unstable.⁶

The silyl-protected allenes **1g** were unusual in that they displayed a divergent behaviour in their cyclizations. Both diastereomers cyclized quantitatively but with little selectivity (see Table). Diol *anti*-**1g** produced a 1.85:1 mixture of the corresponding **2g** and **3g** whereas *syn*-**1g** approximately reversed this ratio

(1:2:3). It is likely that the steric bulk of the silyl protecting group tends to equalize the steric requirements around the allene termini in **1g**. As a result, reactions are rather unselective and increasing amounts of dihydrofurans **3** are observed.

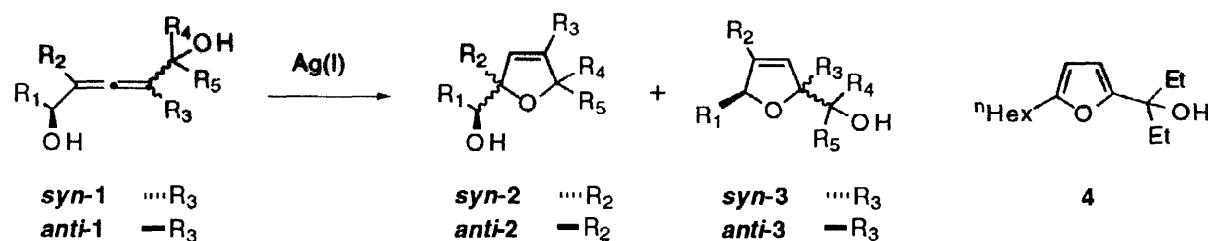


Table. Ag(I)-Promoted Cyclization of Allenic Diols.

Diol	R ₁	R ₂	R ₃	R ₄	R ₅	anti-1/ syn-1	anti-2/ syn-2	2/3	Yield (%)
1a	(CH ₂) ₄		H	(CH ₂) ₅		4.8/1	4.6/1	1/0	73 ^a
1b	(CH ₂) ₄		H	Me	Me	2.2/1	2.4/1	1/0	70 ^a
1c	(CH ₂) ₄		H	Et	Et	6.7/1	7.3/1	1/0	93 ^b
1d	(CH ₂) ₄		Me	(CH ₂) ₅		1/0	1/0	3.7/1	70 ^a
1e	H	nHex	(CH ₂) ₂ OY ^c	(CH ₂) ₅		-	-	1/0	83 ^b
1f	nHex	H	H	Et	Et	1/1	1/1.1	6.7/1 ^d	97 ^b
anti-1g	CH ₂ OY ^c	Me	Me	(CH ₂) ₅		1/0	1/0	1.85/1	100 ^b
syn-1g	CH ₂ OY ^c	Me	Me	(CH ₂) ₅		0/1	0/1	1/2.3	100 ^b

^a Reaction run with AgNO₃/CaCO₃/Me₂CO/H₂O. Reaction run with AgNO₃/Me₂CO. ^c Y = SiPh₂tBu. ^d Ratio 2f/3h + 4.

In summary, the silver(I)-promoted cyclization of α,α' -allenic diols **1** containing tertiary and secondary or primary hydroxyl groups shows a preference for formation of products through the more hindered tertiary hydroxyl group. This selectivity appears to be born out of both steric and electronic effects with the former being the dominant factor.

Experimental.

General. Flash column chromatography⁷ was performed on silica gel (230-400 mesh). HPLC purifications were carried out with either LiChrosorb Si60 (7 μ m, 25 x 2.5 cm) (column 1) or μ Porasil (10 μ m, 19 x 1.5 cm) (column 2) columns. ¹H and ¹³C RMN spectra were obtained in CDCl₃ at 250 MHz and 62.9 MHz, respectively. IR data include only characteristic absorptions. Mass spectra were obtained at 70 eV.

All the allenic diol substrates **1** were prepared by SmI₂-promoted coupling between appropriate alkynyl oxiranes and ketones.⁵ Experimental procedures for Ag(I)-promoted cyclizations of allenic alcohols have been previously reported.^{1a,4d}

1-Hydroxy-7-oxadispiro[5.1.5.2]pentadec-14-ene (2a). The crude product was purified by flash chromatography (10% EtOAc in hexanes) to afford in order of elution the *syn*- and *anti*-isomers of **2a**. Data for the *syn*-isomer: ¹H NMR δ 1.2-1.8 (m, 18H), 2.01 (d, J = 7.0 Hz, 1H, OH), 3.3-3.4 (m, 1H, CH-OH), 5.68 (d, J = 6.1 Hz, 1H, H-15), 5.91 (d, J = 6.0 Hz, 1H, H-14); ¹³C NMR δ 22.2, 22.8, 23.3, 23.3, 25.4,

31.0, 36.6, 38.6, 39.4, 72.5, 89.0, 90.9, 130.4, 134.2; IR (neat) ν 3580, 3450, 1450 cm^{-1} ; HRMS calcd for $\text{C}_{14}\text{H}_{22}\text{O}_2$ 222.16198, found 222.15930. Data for the *anti*-isomer: m.p. 70–71°C; ^1H NMR δ 1.3–1.7 (m, 17H), 2.0 (m, 1H), 2.09 (d, J = 2.2 Hz, 1H, OH), 3.5 (m, 1H, CH-OH), 5.93 (d, J = 6.22 Hz, 1H, H-15), 6.06 (d, J = 6.22 Hz, 1H, H-14); ^{13}C NMR δ 23.4, 23.8, 23.9, 25.3, 31.3, 38.5, 38.9, 39.5, 74.4, 88.4, 93.3, 126.8, 135.4; IR (CHCl_3) ν 3450, 1455 cm^{-1} . Anal. Calcd for $\text{C}_{14}\text{H}_{22}\text{O}_2$: C, 75.62; H, 9.98. Found: C, 75.46; H, 9.91.

6-Hydroxy-2,2-dimethyl-1-oxaspiro[4.5]dec-3-ene (2b). Flash chromatography (10% EtOAc in hexanes) yielded in order of elution the *syn*- and *anti*-isomers of **2b**. Data for the *syn*-isomer: mp 44–45°C; ^1H NMR δ 1.2–1.8 (m, 14H), 1.34 (s, CH_3 , overlapped with mult at 1.2–1.8), 2.0 (d, J = 6.7 Hz, 1H, OH), 3.4–3.5 (m, 1H, CH-OH), 5.65 (d, J = 6.0 Hz, 1H, H-4), 5.76 (d, J = 6.0 Hz, 1H, H-3); ^{13}C NMR δ 22.2, 22.5, 29.2, 29.8, 30.9, 36.0, 72.6, 87.2, 91.8, 129.7, 135.7; IR (CHCl_3) ν 3580, 3470, 1460 cm^{-1} ; HRMS calcd for $\text{C}_{11}\text{H}_{18}\text{O}_2$ 182.13068, found 182.13047. Data for the *anti*-isomer: mp 57–59°C; ^1H NMR δ 1.2–1.5 (m, 8H), 1.34 (s, CH_3 , overlapped with mult at 1.2–1.5), 1.36 (s, CH_3 , overlapped with mult at 1.2–1.5), 1.5–1.8 (m, 5H), 2.0 (m, 1H), 2.03 (d, J = 1.6 Hz, 1H, OH), 3.5 (m, 1H, CH-OH), 5.89 (s, 2H, H-4 and H-3); ^{13}C NMR δ 23.9, 24.0, 28.9, 29.8, 31.5, 38.8, 74.6, 86.5, 94.2, 126.1, 137.3; IR (KBr) ν 3440, 1455 cm^{-1} . Anal. Calcd for $\text{C}_{11}\text{H}_{18}\text{O}_2$: C, 72.47; H, 9.96. Found: C, 72.03; H, 9.90.

2,2-Diethyl-6-hydroxy-1-oxaspiro[4.5]dec-3-ene (2c). The crude product was purified by flash chromatography (20% EtOAc in hexanes) to yield the diastereomeric dihydrofurans as oils. Data for the *syn*-isomer: ^1H NMR δ 0.86 (t, J = 7.8 Hz, 3H, CH_3), 0.89 (t, J = 7.8 Hz, 3H, CH_3), 1.0–1.9 (m, 12H), 2.22 (d, J = 4.1 Hz, 1H, OH), 3.5 (m, 1H, H-6), 5.75 (d, J = 6.1 Hz, 1H, H-4), 5.81 (d, J = 6.1 Hz, 1H, H-3); ^{13}C NMR δ 8.8, 21.2, 22.9, 30.5, 31.5, 32.5, 34.5, 73.1, 91.3, 92.8, 130.1, 133.5; HRMS calcd for $\text{C}_{13}\text{H}_{21}\text{O}_2$ (M-1) 209.154155, found 209.153945. Data for the *anti*-isomer: ^1H NMR δ 0.86 (t, J = 7.5 Hz, 3H, CH_3), 0.90 (t, J = 7.5 Hz, 3H, CH_3), 1.3–1.4 (m, 3H), 1.5–1.8 (m, 8H), 1.9–2.0 (m, 1H), 2.03 (d, J = 2.9 Hz, 1H, OH), 3.5 (m, 1H, H-6), 5.89 (d, J = 6.2 Hz, 1H, H-4), 5.91 (d, J = 6.2 Hz, 1H, H-3); ^{13}C NMR δ 8.8, 23.5, 23.7, 31.5, 31.8, 37.8, 74.7, 92.1, 93.3, 127.5, 135.0; IR (neat) ν 3400, 1450, 1000 cm^{-1} ; HRMS calcd for $\text{C}_{13}\text{H}_{22}\text{O}_2$ 210.161980, found 210.161495.

1-Hydroxy-14-methyl-7-oxadispiro[5.1.5.2]pentadec-14-ene (2d) and 2-(1-hydroxycyclohexyl)-2-methyl-2H-4,5,6,7-tetrahydrobenzofuran (3d). The crude product was purified by flash chromatography (10% EtOAc in hexanes) to yield **2d** and **3d** as an inseparable mixture: ^1H NMR δ 1.1–1.7 (m), 1.30 (s, overlapped with m at 1.1–1.7, CH_3 -, **3d**), 1.70 (d, overlapped with m at 1.1–1.7, J = 1.5 Hz, CH_3 , **2d**), 1.9–2.0 (m, 1H), 2.02 (d, J = 2.4 Hz, 1H, OH), 2.3 (m, 1H, H-4, **3d**), 2.50 (d, J = 13.0 Hz, H-4, **3d**), 3.4–3.5 (m, 1H, H-1, **2d**), 4.4 (m, 1H, CH-OH, **3d**), 5.25 (t, J = 1.9 Hz, 1H, H-3, **3d**), 5.53 (c, J = 1.4 Hz, 1H, H-15, **2d**); ^{13}C NMR δ 12.5, 21.6, 21.9, 22.1, 23.2, 23.4, 24.0, 24.0, 25.3, 25.9, 26.8, 27.2, 31.4, 31.7, 32.1, 36.1, 36.4, 37.0, 39.0, 74.7, 75.9, 85.5, 88.1, 91.4, 95.1, 120.5, 121.0, 145.3; IR (neat) ν 3450, 1670, 1450 cm^{-1} ; HRMS calcd for $\text{C}_{15}\text{H}_{24}\text{O}_2$ 236.17763, found 236.17820.

4-[2-(*tert*-Butyldiphenylsilyloxy)ethyl]-2-hexyl-2-hydroxymethyl-1-oxaspiro[4.5]dec-3-ene (2e). The crude product was purified by flash chromatography (10% EtOAc in hexanes) to yield **2e** as an oil: ^1H NMR δ 0.87 (distorted t, 3H, CH_3), 1.05 (s, 9H, $(\text{CH}_3)_3\text{-C}$), 1.1–1.3 (m, 9H), 1.4–1.7 (m, 11H), 1.82 (t, J = 6.3

Hz, 1H, OH), 2.20 (t, J = 6.9 Hz, 2H, C₄-CH₂), 3.37 (dd, J = 10.9, 6.2 Hz, 1H, CH-OH), 3.44 (dd, J = 10.9, 6.6 Hz, 1H, CH-OH), 3.82 (t, J = 6.9 Hz, 2H, CH₂-O-Si), 5.19 (s, 1H, H-3), 7.3-7.4 (m, 6H), 7.6-7.7 (m, 4H); ¹³C NMR δ 14.1, 19.1, 21.8, 22.1, 22.6, 24.4, 25.2, 26.8, 29.5, 29.8, 31.7, 35.9, 36.4, 37.4, 62.5, 68.2, 89.4, 90.6, 122.7, 127.6, 129.6, 133.7, 135.5, 145.2; IR (neat) ν 3450, 1115 cm⁻¹. Anal. calcd for C₃₄H₅₀O₃Si: C, 76.35; H, 9.43. Found: C, 76.25; H, 9.30.

Cyclization of 1f. Purification of the crude by flash chromatography (5% EtOAc in hexanes) afforded a mixture of 2f, 3f and 4, that were separated by HPLC (Column 1, 8% EtOAc in hexanes, 12 mL/min). Data for **5,5-diethyl-2-(1-hydroxyheptyl)-2,5-dihydrofuran (2f)** (less polar isomer): t_R = 21 min; ¹H NMR δ 0.8-0.9 (m, 9H, CH₃), 1.3-1.7 (m, 14H), 2.37 (d, J = 3.2 Hz, 1H, OH), 3.4 (m, 1H, CH-OH), 4.50 (br d, J = 6.9 Hz, 1H, H-2), 5.69 (dd, J = 6.3, 1.7 Hz, 1H, H-3), 5.73 (d, J = 6.6 Hz, 1H, H-4); ¹³C NMR δ 8.2, 8.8, 14.1, 22.6, 25.6, 29.4, 31.6, 31.8, 32.5, 33.1, 74.8, 89.7, 93.7, 126.6, 134.0; IR (CHCl₃) ν 3400, 1460 cm⁻¹. Data for the more polar isomer of 2f: t_R = 38 min; ¹H NMR δ 0.8-1.0 (m, 9H, CH₃), 1.3-1.4 (m, 8H), 1.5-1.7 (m, 6H), 1.94 (d, J = 3.5 Hz, 1H, OH), 3.6 (m, 1H, C₂-CHOH), 4.7 (m, 1H, H-2), 5.78 (dd, J = 6.3, 2.0 Hz, 1H, H-3), 5.82 (d, J = 6.7 Hz, 1H, H-4); ¹³C NMR δ 8.2, 8.8, 14.1, 22.6, 25.9, 29.3, 31.0, 31.8, 32.4, 32.8, 72.9, 89.3, 93.3, 125.7, 134.6; IR ν (CHCl₃) ν 3400, 1460 cm⁻¹; HRMS calcd for C₁₅H₂₈O₂ (M-OH) 223.20619, found 223.20618. Data for **2-(1-ethyl-1-hydroxypropyl)-5-heptyl-2,5-dihydrofuran (3f)** (unstable oil): t_R = 23 min; ¹H NMR δ 0.8-1.0 (m, 9H, CH₃), 1.2-1.6 (m, 14H), 4.77 (br s, 2 H, H-2 and H-5), 5.78 (d, J = 6.0, 1H), 5.91 (d, J = 6.0 Hz, 1H). Data for **2-(1-ethyl-1-hydroxypropyl)-5-heptylfuran (4)** (unstable oil): t_R = 20 min; ¹H NMR δ 0.8-1.0 (m, 9H, CH₃), 1.2-1.3 (m, 6H), 1.6 (m, 2H), 1.7-1.8 (m, 4H), 2.51 (t, J = 8.9 Hz, 2H), 5.89 (d, J = 4.7 Hz, 1H), 6.07 (d, J = 4.7 Hz, 1H).

Cyclization of anti-1g. Flash chromatography (10% EtOAc in hexanes) of the crude product afforded in order of elution **anti-2g** and **anti-3g**. Data for **(2R*, 1'R*)-2-[(2-tert-butyldiphenylsilyloxy-1-hydroxyethyl]-2,4-dimethyl-1-oxaspiro[4.5]dec-3-ene (anti-2g)**: ¹H NMR δ 1.07 (s, 9H, (CH₃)₃-C), 1.23 (s, 3H, C₂-CH₃), 1.3-1.7 (m, 13H), 1.63 (d, overlapped with m at 1.3-1.7, J = 1.4 Hz, C₄-CH₃), 2.66 (d, J = 3.3 Hz, 1H, OH), 3.6 (m, 1H, CH-OH), 3.70 (dd, J = 10.2, 6.8 Hz, 1H, CH-OSi), 3.79 (dd, J = 10.2, 4.1 Hz, 1H, CH-OSi), 5.3 (m, 1H, H-3), 7.3-7.4 (m, 6H), 7.7 (m, 4H); ¹³C NMR δ 12.1, 19.2, 21.9, 21.9, 24.6, 25.3, 26.8, 35.5, 36.3, 65.0, 77.4, 87.7, 88.9, 124.3, 127.7, 129.6, 133.3, 135.5, 142.8; IR (CHCl₃) ν 3500, 1450, 1110 cm⁻¹; HRMS calcd for C₂₅H₃₁O₃Si (M-tBu) 407.204249, found 407.204033. Data for **(2R*, 5R*)-2-[(tert-butyldiphenylsilyloxy)methyl]-5-(1-hydroxycyclohexyl)-3,5-dimethyl-2,5-dihydrofuran (anti-3g)**: ¹H NMR δ 1.05 (s, 9H, (CH₃)₃-C), 1.0-1.1 (m, 1H), 1.2-1.3 (m, 4H), 1.27 (s, overlapped with m at 1.2-1.3, C₅-CH₃), 1.3-1.4 (m, 1H), 1.6-1.7 (m, 7H), 1.73 (s, 3H, C₃-CH₃), 1.78 (d, J = 0.9 Hz, 1H, OH), 3.66 (dd, J = 10.8, 4.0 Hz, 1H, CH-OSi), 3.78 (dd, J = 10.8, 4.0 Hz, 1H, CH-OSi), 4.61 (m, 1H, H-2), 5.43 (m, 1H, H-4), 7.3-7.4 (m, 6H), 7.7 (m, 4H); ¹³C NMR δ 12.9, 19.3, 21.6, 22.1, 25.9, 26.9, 31.8, 32.1, 66.0, 75.8, 89.1, 94.7, 127.1, 127.6, 129.5, 129.6, 133.5, 133.6, 135.7, 135.7, 136.6; IR (CHCl₃) ν 3480, 1450, 1140, 1115, 1070 cm⁻¹; HRMS calcd for C₂₉H₃₉O₂Si 447.271934, found 447.271292.

Cyclization of syn-1g. Flash chromatography (10% EtOAc in hexanes) of the crude product afforded in order of elution **syn-2g** and **syn-3g**. Data for **(2S*, 1'R*)-2-[(2-tert-butyldiphenylsilyloxy-1-**

hydroxy)ethyl]-2,4-dimethyl-1-oxaspiro[4.5]dec-3-ene (*syn*-**2g**): ^1H NMR δ 1.06 (s, 9H, $(\text{CH}_3)_3\text{-C}$), 1.20 (s, 3H, $\text{C}_2\text{-CH}_3$), 1.2-1.7 (m, 13H), 1.60 (d, overlapped with m at 1.2-1.7, $J = 1.4$ Hz, $\text{C}_4\text{-CH}_3$), 2.67 (s, 1H, OH), 3.6-3.7 (m, 2H, CH-OH and CH-OSi), 3.7 (m, 1H, CH-OSi), 5.3 (m, 1H, H-3), 7.3-7.4 (m, 6H), 7.6-7.7 (m, 4H); ^{13}C NMR δ 12.1, 19.2, 21.9, 22.0, 24.0, 25.3, 26.8, 35.4, 36.3, 65.0, 77.4, 87.6, 88.8, 124.4, 127.7, 129.6, 133.4, 135.6, 142.6; IR (CHCl_3) ν 3480, 1590 cm^{-1} ; HRMS calcd for $\text{C}_{28}\text{H}_{37}\text{O}_3\text{Si}$ ($\text{M}-\text{CH}_3$) 449.251199, found 449.252657. Data for **(2*R**,5*S**)-2-[(*tert*-butyldiphenylsilyloxyethyl)-5-(1-hydroxycyclohexyl)-3,5-dimethyl-2,5-dihydrofuran** (*syn*-**3g**): ^1H NMR δ 1.05 (s, 9H, $(\text{CH}_3)_3\text{-C}$), 1.25 (s, 3H, $\text{C}_5\text{-CH}_3$), 1.3-1.7 (m, 9H), 1.71 (s, 3H, $\text{C}_3\text{-CH}_3$), 1.8 (m, 1H), 2.94 (s, 1H, OH), 3.61 (dd, $J = 11.2, 2.4$ Hz, 1H, CH-OSi), 3.84 (dd, $J = 11.2, 3.4$ Hz, 1H, CH-OSi), 4.6 (m, 1H, $\text{C}_2\text{-H}$), 5.58 (br s, $W_{1/2} = 5.1$ Hz, 1H, H-4), 7.3-7.4 (m, 6H), 7.7 (m, 4H); ^{13}C NMR δ 12.5, 19.1, 21.2, 21.6, 26.2, 26.8, 31.5, 33.2, 64.6, 74.3, 86.3, 94.5, 127.7, 128.1, 129.7, 129.8, 132.8, 132.9, 135.2, 135.6, 135.7; IR (CHCl_3) ν 3500, 1450, 1110 cm^{-1} . Anal. calcd for $\text{C}_{29}\text{H}_{40}\text{O}_3\text{Si}$: C, 74.96; H, 8.68. Found: C, 74.48; H, 8.75.

Acknowledgments. Financial support by the Dirección General de Investigación Científica y Técnica (DGICYT PB89-0412 and PB92-0449), the Universidad del País Vasco (UPV 170.310-0133/89, 170.310-EC021/92 and 170.310-EC201/94) and the Ministerio de Educación y Ciencia (Spain) (Fellowship to M.S.) is gratefully acknowledged. We also thank Eva Alonso for providing a sample of diol **1c**.

REFERENCES AND NOTES

1. (a) Marshall, J. A.; Pinney, K. G. *J. Org. Chem.* **1993**, *58*, 7180-7184. (b) Marshall, J. A.; Yu, B. C. *J. Org. Chem.* **1994**, *59*, 324-331. (c) Visser, M. S.; Hoveyda, A. H. *Tetrahedron* **1995**, *51*, 4383-4394.
2. (a) Deli, J.; Mólnar, P.; Tóth, G.; Baumeler, A.; Eugster, C. H. *Helv. Chim. Acta* **1991**, *74*, 819-824. (b) Kupchan, S. M.; Davies, V. H.; Fujita, T.; Cox, M. R.; Restivo, R. J.; Bryan, R. F. *J. Org. Chem.* **1973**, *38*, 1853-1858. (c) Semple, J. E.; Wang, P. C.; Lysenko, Z.; Joullié, M. M. *J. Am. Chem. Soc.* **1980**, *102*, 7505-7510.
3. (a) Hormuth, S.; Reissig, H. U. *J. Org. Chem.* **1994**, *59*, 67-73. (b) Katritzky, A. R.; Verin, S. V. *J. Heterocycl. Chem.* **1995**, *32*, 323-328.
4. (a) Thebtaranonth, C.; Thebtaranonth, Y. *Cyclization Reactions*; CRC Press: London, 1994, pp 310-312. (b) Marshall, J. A.; Wang, X. *J. J. Org. Chem.* **1991**, *56*, 4913-4918. (c) Marshall, J. A.; Yu, R. H.; Perkins, J. F. *J. Org. Chem.* **1995**, *60*, 5550-5555. (d) Marshall, J. A.; Bartley, G. S. *J. Org. Chem.* **1994**, *59*, 7169-7171. (e) Saito, S.; Hara, T.; Takahashi, N.; Hirai, M.; Moriwake, T. *Synlett* **1992**, 237-238. (f) Shieh, S. J.; Tang, T. C.; Lee, J. S.; Lee, G. H.; Peng, S. M.; Liu, R. S. *J. Org. Chem.* **1996**, *61*, 3245-3249.
5. (a) Aurrecoechea, J. M.; Solay, M. *Tetrahedron Lett.* **1995**, *36*, 2501-2504. (b) See preceding paper in this issue.
6. Characterization for **3f** and **4** rests solely on their ^1H NMR spectra and therefore these structural assignments are only tentative.
7. Still, W. C.; Kahn, M.; Mitra, A. *J. Org. Chem.* **1978**, *43*, 2923-2925.